
Copyright © 2014 Pearson Education, Inc.

Chapter 5

Conditionals and Loops

Java Software Solutions

Foundations of Program Design

John Lewis

William Loftus

Outline

Boolean Expressions

The if Statement

Comparing Data

The while Statement

Copyright © 2014 Pearson Education, Inc.

Flow of Control

• Unless specified otherwise, the order of statement

execution through a method is linear: one after

another

• Some programming statements allow us to make

decisions and perform repetitions

• These decisions are based on boolean expressions

(also called conditions) that evaluate to true or false

• The order of statement execution is called the flow

of control

Copyright © 2014 Pearson Education, Inc.

Conditional Statements
• A conditional statement lets us choose which

statement will be executed next

• They are sometimes called selection statements

• Conditional statements give us the power to make
basic decisions

• The Java conditional statements are the:

– if and if-else statement

– switch statement

• We'll explore the switch statement in Chapter 6

Copyright © 2014 Pearson Education, Inc.

Boolean Expressions

• A condition often uses one of Java's equality
operators or relational operators, which all return
boolean results:

== equal to

!= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

• Note the difference between the equality operator
(==) and the assignment operator (=)

Copyright © 2014 Pearson Education, Inc.

Boolean Expressions

• An if statement with its boolean condition:

if (sum > MAX)

delta = sum – MAX;

• First, the condition is evaluated: the value of sum is
either greater than the value of MAX, or it is not

• If the condition is true, the assignment statement is
executed; if it isn't, it is skipped

• See Age.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// Age.java Author: Lewis/Loftus

//

// Demonstrates the use of an if statement.

//**

import java.util.Scanner;

public class Age

{

//---

// Reads the user's age and prints comments accordingly.

//---

public static void main(String[] args)

{

final int MINOR = 21;

Scanner scan = new Scanner(System.in);

System.out.print("Enter your age: ");

int age = scan.nextInt();

continue

Copyright © 2014 Pearson Education, Inc.

continue

System.out.println("You entered: " + age);

if (age < MINOR)

System.out.println("Youth is a wonderful thing. Enjoy.");

System.out.println("Age is a state of mind.");

}

}

Copyright © 2014 Pearson Education, Inc.

continue

System.out.println("You entered: " + age);

if (age < MINOR)

System.out.println("Youth is a wonderful thing. Enjoy.");

System.out.println("Age is a state of mind.");

}

}

Sample Run

Enter your age: 47

You entered: 47

Age is a state of mind.

Another Sample Run

Enter your age: 12

You entered: 12

Youth is a wonderful thing. Enjoy.

Age is a state of mind.

Logical Operators
• Boolean expressions can also use the following

logical operators:

! Logical NOT

&& Logical AND

|| Logical OR

• They all take boolean operands and produce
boolean results

• Logical NOT is a unary operator (it operates on one
operand)

• Logical AND and logical OR are binary operators
(each operates on two operands)

Copyright © 2014 Pearson Education, Inc.

Logical NOT

• The logical NOT operation is also called logical
negation or logical complement

• If some boolean condition a is true, then !a is false;
if a is false, then !a is true

• Logical expressions can be shown using a truth
table:

Copyright © 2014 Pearson Education, Inc.

a !a

true false

false true

Logical AND and Logical OR

• The logical AND expression

a && b

is true if both a and b are true, and false otherwise

• The logical OR expression

a || b

is true if a or b or both are true, and false otherwise

Copyright © 2014 Pearson Education, Inc.

Logical AND and Logical OR

• A truth table shows all possible true-false
combinations of the terms

• Since && and || each have two operands, there
are four possible combinations of conditions a and
b

Copyright © 2014 Pearson Education, Inc.

a b a && b a || b

true true true true

true false false true

false true false true

false false false false

Logical Operators

• Expressions that use logical operators can form
complex conditions

if (total < MAX+5 && !found)

System.out.println("Processing…");

• All logical operators have lower precedence than
the relational operators

• The ! operator has higher precedence than && and
||

Copyright © 2014 Pearson Education, Inc.

Boolean Expressions

• Specific expressions can be evaluated using truth
tables

Copyright © 2014 Pearson Education, Inc.

total < MAX found !found total < MAX && !found

false false true false

false true false false

true false true true

true true false false

Short-Circuited Operators

• The processing of && and || is “short-circuited”

• If the left operand is sufficient to determine the
result, the right operand is not evaluated

if (count != 0 && total/count > MAX)

System.out.println("Testing.");

• This type of processing should be used carefully

Copyright © 2014 Pearson Education, Inc.

Outline

Boolean Expressions

The if Statement

Comparing Data

The while Statement

Copyright © 2014 Pearson Education, Inc.

The if Statement

• Let's now look at the if statement in more detail

• The if statement has the following syntax:

if (condition)

statement;

if is a Javais a Javais a Javais a Java

reserved wordreserved wordreserved wordreserved word

The The The The condition must be amust be amust be amust be a

boolean expression. It mustboolean expression. It mustboolean expression. It mustboolean expression. It must

evaluate to either true or false.evaluate to either true or false.evaluate to either true or false.evaluate to either true or false.

If the If the If the If the condition is true, the is true, the is true, the is true, the statement is executed.is executed.is executed.is executed.

If it is false, the If it is false, the If it is false, the If it is false, the statement is skipped.is skipped.is skipped.is skipped.

Copyright © 2014 Pearson Education, Inc.

Logic of an if statement

conditionconditionconditioncondition

evaluatedevaluatedevaluatedevaluated

statementstatementstatementstatement

truetruetruetrue

falsefalsefalsefalse

Copyright © 2014 Pearson Education, Inc.

Indentation
• The statement controlled by the if statement is

indented to indicate that relationship

• The use of a consistent indentation style makes a
program easier to read and understand

• The compiler ignores indentation, which can lead to
errors if the indentation is not correct

"Always code as if the person who ends up
maintaining your code will be a violent
psychopath who knows where you live."

-- Martin Golding

Copyright © 2014 Pearson Education, Inc.

Quick Check

Copyright © 2014 Pearson Education, Inc.

What do the following statements do?

if (total != stock + warehouse)

inventoryError = true;

if (found || !done)

System.out.println("Ok");

Quick Check

Copyright © 2014 Pearson Education, Inc.

What do the following statements do?

if (total != stock + warehouse)

inventoryError = true;

if (found || !done)

System.out.println("Ok");

Sets the boolean variable to true if the value of total

is not equal to the sum of stock and warehouse

Prints "Ok" if found is true or done is false

The if-else Statement

• An else clause can be added to an if statement to

make an if-else statement

if (condition)

statement1;

else

statement2;

• If the condition is true, statement1 is executed; if

the condition is false, statement2 is executed

• One or the other will be executed, but not both

• See Wages.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// Wages.java Author: Lewis/Loftus

//

// Demonstrates the use of an if-else statement.

//**

import java.text.NumberFormat;

import java.util.Scanner;

public class Wages

{

//---

// Reads the number of hours worked and calculates wages.

//---

public static void main(String[] args)

{

final double RATE = 8.25; // regular pay rate

final int STANDARD = 40; // standard hours in a work week

Scanner scan = new Scanner(System.in);

double pay = 0.0;

continue

Copyright © 2014 Pearson Education, Inc.

continue

System.out.print("Enter the number of hours worked: ");

int hours = scan.nextInt();

System.out.println ();

// Pay overtime at "time and a half"

if (hours > STANDARD)

pay = STANDARD * RATE + (hours-STANDARD) * (RATE * 1.5);

else

pay = hours * RATE;

NumberFormat fmt = NumberFormat.getCurrencyInstance();

System.out.println("Gross earnings: " + fmt.format(pay));

}

}

Copyright © 2014 Pearson Education, Inc.

continue

System.out.print ("Enter the number of hours worked: ");

int hours = scan.nextInt();

System.out.println ();

// Pay overtime at "time and a half"

if (hours > STANDARD)

pay = STANDARD * RATE + (hours-STANDARD) * (RATE * 1.5);

else

pay = hours * RATE;

NumberFormat fmt = NumberFormat.getCurrencyInstance();

System.out.println("Gross earnings: " + fmt.format(pay));

}

}

Sample Run

Enter the number of hours worked: 46

Gross earnings: $404.25

Logic of an if-else statement

conditionconditionconditioncondition

evaluatedevaluatedevaluatedevaluated

statement1statement1statement1statement1

truetruetruetrue falsefalsefalsefalse

statement2statement2statement2statement2

Copyright © 2014 Pearson Education, Inc.

The Coin Class

• Let's look at an example that uses a class that

represents a coin that can be flipped

• Instance data is used to indicate which face (heads

or tails) is currently showing

• See CoinFlip.java

• See Coin.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// CoinFlip.java Author: Lewis/Loftus

//

// Demonstrates the use of an if-else statement.

//**

public class CoinFlip

{

//---

// Creates a Coin object, flips it, and prints the results.

//---

public static void main(String[] args)

{

Coin myCoin = new Coin();

myCoin.flip();

System.out.println(myCoin);

if (myCoin.isHeads())

System.out.println("You win.");

else

System.out.println("Better luck next time.");

}

}

Copyright © 2014 Pearson Education, Inc.

//**

// CoinFlip.java Author: Lewis/Loftus

//

// Demonstrates the use of an if-else statement.

//**

public class CoinFlip

{

//---

// Creates a Coin object, flips it, and prints the results.

//---

public static void main(String[] args)

{

Coin myCoin = new Coin();

myCoin.flip();

System.out.println(myCoin);

if (myCoin.isHeads())

System.out.println("You win.");

else

System.out.println("Better luck next time.");

}

}

Sample Run

Tails

Better luck next time.

Copyright © 2014 Pearson Education, Inc.

//**

// Coin.java Author: Lewis/Loftus

//

// Represents a coin with two sides that can be flipped.

//**

public class Coin

{

private final int HEADS = 0;

private final int TAILS = 1;

private int face;

//---

// Sets up the coin by flipping it initially.

//---

public Coin()

{

flip();

}

continue

Copyright © 2014 Pearson Education, Inc.

continue

//---

// Flips the coin by randomly choosing a face value.

//---

public void flip()

{

face = (int) (Math.random() * 2);

}

//---

// Returns true if the current face of the coin is heads.

//---

public boolean isHeads()

{

return (face == HEADS);

}

continue

Copyright © 2014 Pearson Education, Inc.

continue

//---

// Returns the current face of the coin as a string.

//---

public String toString()

{

String faceName;

if (face == HEADS)

faceName = "Heads";

else

faceName = "Tails";

return faceName;

}

}

Indentation Revisited

• Remember that indentation is for the human

reader, and is ignored by the compiler

if (depth >= UPPER_LIMIT)

delta = 100;

else

System.out.println("Reseting Delta");

delta = 0;

• Despite what the indentation implies, delta will be

set to 0 no matter what

Copyright © 2014 Pearson Education, Inc.

Block Statements

• Several statements can be grouped together into a

block statement delimited by braces

• A block statement can be used wherever a

statement is called for in the Java syntax rules

if (total > MAX)

{

System.out.println("Error!!");

errorCount++;

}

Copyright © 2014 Pearson Education, Inc.

Block Statements
• The if clause, or the else clause, or both, could

govern block statements

• See Guessing.java

if (total > MAX)

{

System.out.println("Error!!");

errorCount++;

}

else

{

System.out.println("Total: " + total);

current = total*2;

}

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// Guessing.java Author: Lewis/Loftus

//

// Demonstrates the use of a block statement in an if-else.

//**

import java.util.*;

public class Guessing

{

//---

// Plays a simple guessing game with the user.

//---

public static void main(String[] args)

{

final int MAX = 10;

int answer, guess;

Scanner scan = new Scanner(System.in);

Random generator = new Random();

answer = generator.nextInt(MAX) + 1;

continue

Copyright © 2014 Pearson Education, Inc.

continue

System.out.print("I'm thinking of a number between 1 and "

+ MAX + ". Guess what it is: ");

guess = scan.nextInt();

if (guess == answer)

System.out.println("You got it! Good guessing!");

else

{

System.out.println("That is not correct, sorry.");

System.out.println("The number was " + answer);

}

}

}

Copyright © 2014 Pearson Education, Inc.

continue

System.out.print ("I'm thinking of a number between 1 and "

+ MAX + ". Guess what it is: ");

guess = scan.nextInt();

if (guess == answer)

System.out.println("You got it! Good guessing!");

else

{

System.out.println("That is not correct, sorry.");

System.out.println("The number was " + answer);

}

}

}

Sample Run

I'm thinking of a number between 1 and 10. Guess what it is: 6

That is not correct, sorry.

The number was 9

Nested if Statements

• The statement executed as a result of an if or

else clause could be another if statement

• These are called nested if statements

• An else clause is matched to the last unmatched

if (no matter what the indentation implies)

• Braces can be used to specify the if statement to

which an else clause belongs

• See MinOfThree.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// MinOfThree.java Author: Lewis/Loftus

//

// Demonstrates the use of nested if statements.

//**

import java.util.Scanner;

public class MinOfThree

{

//---

// Reads three integers from the user and determines the smallest

// value.

//---

public static void main(String[] args)

{

int num1, num2, num3, min = 0;

Scanner scan = new Scanner(System.in);

System.out.println("Enter three integers: ");

num1 = scan.nextInt();

num2 = scan.nextInt();

num3 = scan.nextInt();

continue

Copyright © 2014 Pearson Education, Inc.

continue

if (num1 < num2)

if (num1 < num3)

min = num1;

else

min = num3;

else

if (num2 < num3)

min = num2;

else

min = num3;

System.out.println("Minimum value: " + min);

}

}

Copyright © 2014 Pearson Education, Inc.

continue

if (num1 < num2)

if (num1 < num3)

min = num1;

else

min = num3;

else

if (num2 < num3)

min = num2;

else

min = num3;

System.out.println("Minimum value: " + min);

}

}

Sample Run

Enter three integers:

84 69 90

Minimum value: 69

Outline

Boolean Expressions

The if Statement

Comparing Data

The while Statement

Copyright © 2014 Pearson Education, Inc.

Comparing Data

• When comparing data using boolean expressions,

it's important to understand the nuances of certain

data types

• Let's examine some key situations:

– Comparing floating point values for equality

– Comparing characters

– Comparing strings (alphabetical order)

– Comparing object vs. comparing object references

Copyright © 2014 Pearson Education, Inc.

Comparing Float Values

• You should rarely use the equality operator (==)
when comparing two floating point values (float
or double)

• Two floating point values are equal only if their
underlying binary representations match exactly

• Computations often result in slight differences that
may be irrelevant

• In many situations, you might consider two floating
point numbers to be "close enough" even if they
aren't exactly equal

Copyright © 2014 Pearson Education, Inc.

Comparing Float Values
• To determine the equality of two floats, use the

following technique:

if (Math.abs(f1 - f2) < TOLERANCE)

System.out.println("Essentially equal");

• If the difference between the two floating point

values is less than the tolerance, they are

considered to be equal

• The tolerance could be set to any appropriate level,

such as 0.000001

Copyright © 2014 Pearson Education, Inc.

Comparing Characters

• As we've discussed, Java character data is based
on the Unicode character set

• Unicode establishes a particular numeric value for
each character, and therefore an ordering

• We can use relational operators on character data
based on this ordering

• For example, the character '+' is less than the
character 'J' because it comes before it in the
Unicode character set

• Appendix C provides an overview of Unicode

Copyright © 2014 Pearson Education, Inc.

Comparing Characters

• In Unicode, the digit characters (0-9) are contiguous
and in order

• Likewise, the uppercase letters (A-Z) and lowercase
letters (a-z) are contiguous and in order

Copyright © 2014 Pearson Education, Inc.

Characters Unicode Values

0 – 9 48 through 57

A – Z 65 through 90

a – z 97 through 122

Comparing Strings

• Remember that in Java a character string is an
object

• The equals method can be called with strings to
determine if two strings contain exactly the same
characters in the same order

• The equals method returns a boolean result

if (name1.equals(name2))

System.out.println("Same name");

Copyright © 2014 Pearson Education, Inc.

Comparing Strings

• We cannot use the relational operators to compare

strings

• The String class contains the compareTo

method for determining if one string comes before

another

• A call to name1.compareTo(name2)

– returns zero if name1 and name2 are equal (contain the

same characters)
– returns a negative value if name1 is less than name2

– returns a positive value if name1 is greater than name2

Copyright © 2014 Pearson Education, Inc.

Comparing Strings

• Because comparing characters and strings is based

on a character set, it is called a lexicographic

ordering

Copyright © 2014 Pearson Education, Inc.

int result = name1.comareTo(name2);

if (result < 0)

System.out.println(name1 + "comes first");

else

if (result == 0)

System.out.println("Same name");

else

System.out.println(name2 + "comes first");

Lexicographic Ordering

• Lexicographic ordering is not strictly alphabetical
when uppercase and lowercase characters are
mixed

• For example, the string "Great" comes before the
string "fantastic" because all of the uppercase
letters come before all of the lowercase letters in
Unicode

• Also, short strings come before longer strings with
the same prefix (lexicographically)

• Therefore "book" comes before "bookcase"

Copyright © 2014 Pearson Education, Inc.

Comparing Objects

• The == operator can be applied to objects – it
returns true if the two references are aliases of each
other

• The equals method is defined for all objects, but
unless we redefine it when we write a class, it has
the same semantics as the == operator

• It has been redefined in the String class to
compare the characters in the two strings

• When you write a class, you can redefine the
equals method to return true under whatever
conditions are appropriate

Copyright © 2014 Pearson Education, Inc.

Outline

Boolean Expressions

The if Statement

Comparing Data

The while Statement

Copyright © 2014 Pearson Education, Inc.

Repetition Statements

• Repetition statements allow us to execute a

statement multiple times

• Often they are referred to as loops

• Like conditional statements, they are controlled by

boolean expressions

• Java has three kinds of repetition statements:
while, do, and for loops

• The do and for loops are discussed in Chapter 6

Copyright © 2014 Pearson Education, Inc.

The while Statement

• A while statement has the following syntax:

while (condition)

statement;

• If the condition is true, the statement is

executed

• Then the condition is evaluated again, and if it is

still true, the statement is executed again

• The statement is executed repeatedly until the

condition becomes false

Copyright © 2014 Pearson Education, Inc.

Logic of a while Loop

statementstatementstatementstatement

truetruetruetrue
falsefalsefalsefalse

conditionconditionconditioncondition

evaluatedevaluatedevaluatedevaluated

Copyright © 2014 Pearson Education, Inc.

The while Statement

• An example of a while statement:

• If the condition of a while loop is false initially, the

statement is never executed

• Therefore, the body of a while loop will execute

zero or more times

int count = 1;

while (count <= 5)

{

System.out.println(count);

count++;

}

Copyright © 2014 Pearson Education, Inc.

Sentinel Values

• Let's look at some examples of loop processing

• A loop can be used to maintain a running sum

• A sentinel value is a special input value that
represents the end of input

• See Average.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// Average.java Author: Lewis/Loftus

//

// Demonstrates the use of a while loop, a sentinel value, and a

// running sum.

//**

import java.text.DecimalFormat;

import java.util.Scanner;

public class Average

{

//---

// Computes the average of a set of values entered by the user.

// The running sum is printed as the numbers are entered.

//---

public static void main(String[] args)

{

int sum = 0, value, count = 0;

double average;

Scanner scan = new Scanner(System.in);

System.out.print("Enter an integer (0 to quit): ");

value = scan.nextInt();

continue

Copyright © 2014 Pearson Education, Inc.

continue

while (value != 0) // sentinel value of 0 to terminate loop

{

count++;

sum += value;

System.out.println("The sum so far is " + sum);

System.out.print("Enter an integer (0 to quit): ");

value = scan.nextInt();

}

continue

Copyright © 2014 Pearson Education, Inc.

continue

System.out.println();

if (count == 0)

System.out.println("No values were entered.");

else

{

average = (double)sum / count;

DecimalFormat fmt = new DecimalFormat("0.###");

System.out.println("The average is " + fmt.format(average));

}

}

}

Copyright © 2014 Pearson Education, Inc.

continue

System.out.println ();

if (count == 0)

System.out.println ("No values were entered.");

else

{

average = (double)sum / count;

DecimalFormat fmt = new DecimalFormat ("0.###");

System.out.println ("The average is " + fmt.format(average));

}

}

}

Sample Run

Enter an integer (0 to quit): 25

The sum so far is 25

Enter an integer (0 to quit): 164

The sum so far is 189

Enter an integer (0 to quit): -14

The sum so far is 175

Enter an integer (0 to quit): 84

The sum so far is 259

Enter an integer (0 to quit): 12

The sum so far is 271

Enter an integer (0 to quit): -35

The sum so far is 236

Enter an integer (0 to quit): 0

The average is 39.333

Input Validation

• A loop can also be used for input validation, making
a program more robust

• It's generally a good idea to verify that input is valid
(in whatever sense) when possible

• See WinPercentage.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// WinPercentage.java Author: Lewis/Loftus

//

// Demonstrates the use of a while loop for input validation.

//**

import java.text.NumberFormat;

import java.util.Scanner;

public class WinPercentage

{

//---

// Computes the percentage of games won by a team.

//---

public static void main(String[] args)

{

final int NUM_GAMES = 12;

int won;

double ratio;

Scanner scan = new Scanner(System.in);

System.out.print("Enter the number of games won (0 to "

+ NUM_GAMES + "): ");

won = scan.nextInt();

continue

Copyright © 2014 Pearson Education, Inc.

continue

while (won < 0 || won > NUM_GAMES)

{

System.out.print("Invalid input. Please reenter: ");

won = scan.nextInt();

}

ratio = (double)won / NUM_GAMES;

NumberFormat fmt = NumberFormat.getPercentInstance();

System.out.println();

System.out.println("Winning percentage: " + fmt.format(ratio));

}

}

Copyright © 2014 Pearson Education, Inc.

continue

while (won < 0 || won > NUM_GAMES)

{

System.out.print ("Invalid input. Please reenter: ");

won = scan.nextInt();

}

ratio = (double)won / NUM_GAMES;

NumberFormat fmt = NumberFormat.getPercentInstance();

System.out.println();

System.out.println("Winning percentage: " + fmt.format(ratio));

}

}

Sample Run

Enter the number of games won (0 to 12): -5

Invalid input. Please reenter: 13

Invalid input. Please reenter: 7

Winning percentage: 58%

Infinite Loops
• The body of a while loop eventually must make

the condition false

• If not, it is called an infinite loop, which will execute
until the user interrupts the program

• This is a common logical error

• You should always double check the logic of a
program to ensure that your loops will terminate
normally

Copyright © 2014 Pearson Education, Inc.

Infinite Loops

• An example of an infinite loop:

• This loop will continue executing until interrupted

(Control-C) or until an underflow error occurs

int count = 1;

while (count <= 25)

{

System.out.println(count);

count = count - 1;

}

Copyright © 2014 Pearson Education, Inc.

Nested Loops

• Similar to nested if statements, loops can be

nested as well

• That is, the body of a loop can contain another loop

• For each iteration of the outer loop, the inner loop

iterates completely

• See PalindromeTester.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// PalindromeTester.java Author: Lewis/Loftus

//

// Demonstrates the use of nested while loops.

//**

import java.util.Scanner;

public class PalindromeTester

{

//---

// Tests strings to see if they are palindromes.

//---

public static void main(String[] args)

{

String str, another = "y";

int left, right;

Scanner scan = new Scanner(System.in);

while (another.equalsIgnoreCase("y")) // allows y or Y

{

System.out.println("Enter a potential palindrome:");

str = scan.nextLine();

left = 0;

right = str.length() - 1;

continue

Copyright © 2014 Pearson Education, Inc.

continue

while (str.charAt(left) == str.charAt(right) && left < right)

{

left++;

right--;

}

System.out.println();

if (left < right)

System.out.println("That string is NOT a palindrome.");

else

System.out.println("That string IS a palindrome.");

System.out.println();

System.out.print("Test another palindrome (y/n)? ");

another = scan.nextLine();

}

}

}

Copyright © 2014 Pearson Education, Inc.

continue

while (str.charAt(left) == str.charAt(right) && left < right)

{

left++;

right--;

}

System.out.println();

if (left < right)

System.out.println ("That string is NOT a palindrome.");

else

System.out.println ("That string IS a palindrome.");

System.out.println();

System.out.print ("Test another palindrome (y/n)? ");

another = scan.nextLine();

}

}

}

Sample Run

Enter a potential palindrome:

radar

That string IS a palindrome.

Test another palindrome (y/n)? y

Enter a potential palindrome:

able was I ere I saw elba

That string IS a palindrome.

Test another palindrome (y/n)? y

Enter a potential palindrome:

abracadabra

That string is NOT a palindrome.

Test another palindrome (y/n)? n

Quick Check

Copyright © 2014 Pearson Education, Inc.

How many times will the string "Here" be printed?

count1 = 1;

while (count1 <= 10)

{

count2 = 1;

while (count2 < 20)

{

System.out.println("Here");

count2++;

}

count1++;

}

Quick Check

Copyright © 2014 Pearson Education, Inc.

How many times will the string "Here" be printed?

count1 = 1;

while (count1 <= 10)

{

count2 = 1;

while (count2 < 20)

{

System.out.println("Here");

count2++;

}

count1++;

}

10 * 19 = 190

